关闭
 
读者在线:用户名 密码
首页 期刊简介 投稿须知 期刊目录 专家风采 编委会 特邀顾问 联系我们 移动出版
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5



刊物信息

期刊名称:药物分析杂志
主管单位:中国科学技术协会
主办单位:中国药学会
承办:中国食品药品检定研究院
主编:金少鸿
地址:北京天坛西里2号
邮政编码:100050
电话:010-67012819,67058427
电子邮箱:ywfx@nifdc.org.cn
国际标准刊号:ISSN 0254-1793
国内统一刊号:CN 11-2224/R
邮发代号:2-237
 

访问统计
您是第  1 0 5 1 7 0 4 5 位浏览者
您当前的位置:首页 >> 正文

应用Gal抗原缺失小鼠评价可降解异种脱细胞真皮基质的免疫原性

Evaluation of immunogenicity of biodegradable acellular dermis matrix in Gal antigen-deficient mice

分类号:R917
出版年·卷·期(页码):2019,39 (8):1370-1378
DOI: 10.16155/j.0254-1793.2017.01.01
-----摘要:-------------------------------------------------------------------------------------------

目的:采用Gal抗原缺失小鼠评价脱细胞真皮基质及其降解过程中的残余免疫风险。方法:Gal抗原缺失小鼠经兔血预免后,随机分为对照组、T1组、T2组。T1组腿部肌肉间植入牛真皮基质(原材料),T2组肌肉间植入脱细胞真皮基质,对照组进行"假手术"操作。在植入后的4、12、52周分别取材,用ELISA方法检测小鼠血清总IgG、IgM含量和血清抗-Gal IgG、IgM水平;用流式细胞仪检测血清IL-4、IL-10、IL-12p40、IFN-γ等细胞因子含量,以及脾淋巴细胞亚型百分比等;进行脾体外淋巴细胞增殖试验,采用CCK-8试剂检测淋巴细胞增殖率;取胸腺、脾脏以及包裹植入物的局部肌肉样本,HE染色后进行组织病理学评价。通过与对照组的比较,进行牛真皮基质原材料和脱细胞真皮基质的免疫毒理学风险评价。结果:与对照组相比,小鼠植入牛真皮基质原材料的T1组小鼠血清抗-Gal IgG含量和体外脾脏淋巴细胞增殖率有统计学显著性差异。T1组小鼠在4周时,血清抗-Gal IgG平均含量是对照组的2倍;植入12周时,血清抗-Gal IgG平均含量继续升高,达到对照组的近7倍,统计学分析均有显著性差异,表明由降解引起的Gal抗原持续暴露或暴露增加,致使小鼠血清抗-Gal IgG含量升高;在植入52周时,血清抗-Gal IgG平均含量回复到对照组水平。植入12周时,T1组小鼠的脾淋巴细胞体外培养3、7d时,淋巴细胞增殖率分别是对照组的211%和243%。组织病理学分析显示T1组牛真皮基质植入后4周时局部反应为重度刺激,12周时为中度刺激,52周时为轻微刺激。植入脱细胞真皮基质的T2组在4、12、52周的不同时点,小鼠血清总IgG、IgM含量,抗-Gal IgG和IgM含量,血清细胞因子,脾淋巴细胞分型和淋巴细胞体外增殖等不同指标的检测结果与对照组相比均无统计学差异;组织病理学分析显示T2组脱细胞真皮基质植入后4周时局部反应为中度刺激,12周时为轻微刺激,52周时为无刺激。而且,脱细胞真皮基质在4、12、52周时的植入局部反应明显低于真皮基质原材料。结论:牛真皮基质(原材料)及其降解产物具有引起Gal抗原缺失小鼠血清抗-Gal IgG含量升高和脾脏淋巴细胞增殖的免疫原性;而脱细胞真皮基质在植入后降解过程中的免疫反应与对照组相比均无显著性差异。这些结果表明脱细胞处理工艺降低了脱细胞真皮基质的特异性免疫反应。

-----英文摘要:---------------------------------------------------------------------------------------

Objective: To evaluate the residual immune risk of acellular dermis matrix during the biodegradation using Gal antigen-deficient mice. Methods: Gal antigen-deficient mice were randomly divided into the control group, T1 group and T2 group in subsequent to the preimmunization with rabbit blood. The control group underwent a "false operation", while T1 group was implanted with bovine dermis matrix (raw material)and T2 group was implanted with acellular dermis matrix between the leg muscles of mice. At 4 weeks, 12 weeks and 52 weeks after implantation, the total serum IgG and IgM, and serum anti-Gal IgG and IgM levels were measured by ELISA, and serum IL-4, IL-10, IL-12p40, IFN-γ as well as the percentage of spleen lymphocyte subtypes were detected using flow cytometry, and the proliferation test of spleen lymphocytes in vitro was carried out, in which the proliferation rate of lymphocytes was determined by CCK-8 reagent. Thymus, spleen and local muscle contained implant specimens were stained by HE for a histopathological observation. The immunotoxicological risks of bovine dermis matrix in T1 group and acellular dermis matrix in T2 group were evaluated by comparing with the control group. Results: The serum anti-Gal IgG content and the proliferation rate of spleen lymphocytes in T1 group were significantly different from those in the control group. At 4 weeks after implantation, the average content of serum anti-Gal IgG in T1 group was twice as high as that in the control group, and the average content of serum antiGal IgG continued to increase until 12 weeks after implantation, which was nearly 7 times higher than that in the control group. These results indicated that the continuous exposure or enhanced exposure of xeno antigen (like Gal antigen)caused by the degradation of sample resulted in an increase of serum anti-Gal IgG content in Gal antigendeficient mice. At 52 weeks after implantation, the average content of serum anti-Gal IgG in T1 group returned to the level of that in the control group. At 12 weeks of implantation, the proliferation rate of spleen lymphocytes in T1 group that cultured for 3 days and 7 days were 211% and 243% of that in the control group, respectively. Histopathological data showed that there was severe irritation in local tissues at 4 weeks, moderate irritation at 12 weeks and slight irritation at 52 weeks after implantation of bovine dermis matrix in T1 group. In T2 group, serum total IgG and IgM content, anti-Gal IgG and IgM content, serum cytokines, spleen lymphocyte subtypes and the proliferation rate of lymphocytes in vitro were no significant differences compared to the control group at 4 weeks, 12 weeks and 52 weeks after implantation, and histopathological analysis showed that there was moderate irritation at 4 weeks, mild irritation at 12 weeks and non-irritation at 52 weeks after acellular dermis implantation. Furthermore, the inflammation of acellular dermis matrix at 4 weeks, 12 weeks and 52 weeks after implantation were significantly lower than those of dermis matrix raw materials. Conclusion: The bovine dermis matrix (raw material)and its degradation products can increase of serum anti-Gal IgG content and spleen lymphocytes proliferation in Gal antigen-deficient mice, but there is no significant change in immune response in acellular dermis matrix implantation group during post-implantation and material degradation. These results suggest that decellularizing treatment decreases the adverse immune responses.

-----参考文献:---------------------------------------------------------------------------------------

[1] KEANE TJ, LONDONO R, TURNER NJ, et al. Consequences of ineffective decellularization of biologic scaffolds on the host response[J]. Biomaterials,2012, 33(6):1771
[2] SEIF-NARAGHI SB, SINGELYN JM, SALVATORE MA, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction[J]. Sci Transl Med,2013, 5(173):173
[3] REING JE,BROWN BN,DALY KA,et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds[J]. Biomaterials, 2010, 31(33):8626
[4] CHONG AS, BLINDER L, MA LI, et al. Anti-galactose-alpha (1, 3)galactose antibody production in α1, 3-galactosyl transferase gene knockout mice after xeno and allo-transplantation[J]. Transpl Immunol,2000, 8(2):129
[5] CHIANG TR,FANGET L,GREGORY R,et al. Anti-Gal antibodies in humans and 1, 3α-galactosyltransferase knock-out mice[J]. Transplantation,2000, 69(12):2593
[6] 邵安良,魏利娜,范昌发,等. 2种Gal抗原缺失小鼠的免疫学特性比较研究[J].药物分析杂志, 2018, 38(8):1288 SHAO AL,WEI LN,FAN CF,et al. Comparative study on immune property of two types Gal antigen-deficient model mice[J]. Chin J Pharm Anal,2018, 38(8):1288
[7] 邵安良,魏利娜,范昌发,等. Gal抗原缺失小鼠的应用示范:动物源性硬脑膜补片的免疫原性反应评价[J].药物分析杂志, 2018, 8(38):1296 SHAO AL,WEI LN,FAN CF,et al. The application of Gal antigendeficient mice:evaluation of the immunogenicity of endocranium patch derived from animal tissues[J]. Chin J Pharm Anal, 2018, 38(8):1296
[8] CHOI HJ, KIM MK, LEE HJ, et al. Effect of αGal on corneal xenotransplantation in a mouse model[J]. Xenotransplantation, 2011, 18(3):176
[9] WONG ML,WONG JL,VAPNIARSKY N, et al. In vivo xenogeneic scaffold fate is determined by residual antigenicity and extracellular matrix preservation[J]. Biomaterials,2016, 92:1
[10] GB/T 16886.6-2015医疗器械生物学评价第6部分:植入后局部反应试验[S]. 2008 GB/T 16886.6-2015 Biological Evaluation of Medical Devices-Part 6:Tests for Local Effects After Implantation[S]. 2015
[11] 烟台正海生物技术有限公司.一种脱细胞真皮基质:中国, 20051012610.6[P]. 2008-03-05 Yantai Zhenghai Biotechnology Co., Ltd. An Acellular Dermis Matrix:China, 20051012610.6[P]. 2008-03-05
[12] SHAO A, LING Y, XU L, et al. Xenogeneic bone matrix immune risk assessment using GGTA1 knockout mice[J]. Artif Cells Nanomed Biotechnol,2018, 12:1
[13] LEE C, AHN H, KIM SH, et al. Immune response to bovine pericardium implanted into α1, 3-galactosyltransferase knockout mice:feasibility as an animal model for testing efficacy of anticalcification treatments of xenografts[J]. Eur J Cardiothorac Surg,2012,42(1):164
[14] KIM MS, JEONG S, LIM HG, et al. Differences in xenoreactive immune response and patterns of calcification of porcine and bovine tissues in α-Gal knock-out and wild-type mouse implantation models[J]. Eur J Cardiothorac Surg,2015, 48(3):392
[15] GALILI U, RACHMILEWITZ EA, PELEG A, et al. A unique natural human IgG antibody with anti-alpha-galactosyl specificity[J]. J Exp Med,1984, 160(5):1519
[16] GALILI U, LATEMPLE DC, WALGENBACH AW, et al. Porcine and bovine cartilage transplants in cynomolgus monkey:Ⅱ. Changes in anti-Gal response during chronic rejection[J]. Transplantation, 1997, 63(5):646
[17] STONE KR, WALGENBACH AW, TUREK TJ, et al. Anterior cruciate ligament reconstruction with a porcine xenograft:a serologic, histologic, and biomechanical study in primates[J]. Arthroscopy,2007, 23(4):411
[18] HAMANOVA M, CHMELIKOVA M, NENTWICH, et al. AntiGal IgM,IgA and IgG natural antibodies in childhood[J]. Immunol Lett,2015, 164(1):40

欢迎阅读《药物分析杂志》!您是该文第 754位读者!

药物分析杂志 © 2009
地址:北京天坛西里2号 邮政编码:100050; 电子邮件:ywfx@nicpbp.org.cn