[1] BERGÉS R, SANZ-NEBOT V,BARBOSA J. Modelling retention in liquid chromatography as a function of solvent composition and pH of the mobile phase[J]. J Chromatogr A, 2000, 869(1-2):27
[2] VERVOORT R, DEBETS A, CLAESSENS H, et al. Optimisation and characterisation of silica-based reversed-phase liquid chromatographic systems for the analysis of basic pharmaceuticals[J]. J Chromatogr A, 2000,897(1-2):1
[3] 张伟清,胡昌勤.反相C18 液相色谱柱选择性理论及其应用[J]. 药学学报,2010, 45(5):555 ZHANG WQ, HU CQ. Theory of selectivity of RP-LC C18 column and its application[J]. Acta Pharm Sin, 2010, 45(5):555
[4] 胡秋馨,胡昌勤.反相色谱柱的表征与选择[J].药物分析杂志, 2013,33(2):343 HU QX, HU CQ. Characterization and selection of reversed phase columns[J]. Chin J Pharm Anal, 2013, 33(2):343
[5] IVÁNYI TM, VANDER HEYDEN Y, VISKY D, et al. Minimal number of chromatographic test parameters for the characterisation of reversed-phase liquid chromatographic stationary phases[J]. J Chromatogr A, 2002,954(1-2):99
[6] NEMETH T,HAGHEDOOREN E,NOSZAL B,et al. Three methods to characterize reversed phase liquid chromatographic columns applied to pharmaceutical separations[J]. J Chemom,2008,22(3-4):178
[7] DOLAN J, MAULE A, BINGLEY D, et al. Choosing an equivalent replacement column for a reversed-phase liquid chromatographic assay procedure[J]. J Chromatogr A, 2004, 1057(1-2):59
[8] HAGHEDOOREN E,NÉMETH T,DRAGOVIC S,et al. Comparison of two column characterisation systems based on pharmaceutical applications[J]. J Chromatogr A, 2008, 1189(1-2):59
[9] FAN W, ZHANG Y, CARR PW, et al. Application of Snyder-Dolan classification scheme to the selection of "orthogonal" columns for fast screening of illicit drugs and impurity profiling of pharmaceuticals-I. Isocratic elution[J]. J Chromatogr A, 2009, 1216(38):6587
[10] BORGES EM. How to select equivalent and complimentary reversed phase liquid chromatography columns from column characterization databases[J]. Anal Chim Acta, 2014, 807:143
[11] MARCHAND DH, SNYDER LR, DOLAN JW. Characterization and applications of reversed-phase column selectivity based on the hydrophobic-subtraction model[J]. J Chromatogr A, 2008, 1191(1-2):2
[12] GILROY JJ, DOLAN JW, SNYDER LR. Column selectivity in reversed-phase liquid chromatography:Ⅳ. Type-B alkyl-silica columns[J]. J Chromatogr A,2003, 1000(1-2):757
[13] DEHOUCK P, VISKY D, VAN DEN BERGH G, et al. Facilitated column ranking and selection in reversed-phase liquid chromatographic analysis[J]. LC-GC Europe,2004, 17(11):592
[14] EUERBY M R, PETERSSON P, CAMPBELL W, et al. Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing phenyl moieties using principal component analysis[J]. J Chromatogr A, 2007, 1154(1-2):138
[15] SZULFER J, PLENIS A, BĄCZEK T. Evaluation of a column classification method using the separation of alfuzosin from its related substances[J]. J Chromatogr A, 2012,1229:198
[16] SZULFER J, PLENIS A, BĄCZEK T. Application of a column classification method in a selectivity study involving caffeine and its related impurities[J]. Talanta,2012, 99:492
[17] SZULFER J, PLENIS A, BĄCZEK T. Chemometric evaluation of the column classification system during the pharmaceutical analysis of lamotrigine and its related substances[J]. Anal Bioanal Chem, 2013,405(20):6529
[18] SNYDER LR, DOLAN JW, CARR PW. The hydrophobicsubtraction model of reversed-phase column selectivity[J]. J Chromatogr A, 2004, 1060(1-2):77
[19] JOHNSON AR, JOHNSON CM, STOLL DR, et al. Identifying orthogonal and similar reversed phase liquid chromatography stationary phases using the system selectivity cube and the hydrophobic subtraction model[J]. J Chromatogr A, 2012, 1249:62
[20] MAO Y, CARR PW. The thermally tuned tandem column approach to optimizing selectivity in HPLC[J]. LC-GC North Am, 2003,21(2):69
[21] GRÆSBØLL R, NIELSEN NJ, CHRISTENSEN JH. Using the hydrophobic subtraction model to choose orthogonal columns for online comprehensive two-dimensional liquid chromatography[J]. J Chromatogr A,2014, 1326:39
[22] DOLAN J, SNYDER L. Selecting an"orthogonal" column during high-performance liquid chromatographic method development for samples that may contain non-ionized solutes[J]. J Chromatogr A, 2009, 1216(16):3467
[23] WILSON NS, NELSON MD, DOLAN JW, et al. Column selectivity in reversed-phase liquid chromatography:Ⅰ. A general quantitative relationship[J]. J Chromatogr A, 2002, 961(2):171
[24] DOLAN JW, SNYDER LR, DJORDJEVIC NM, et al. Simultaneous variation of temperature and gradient steepness for reversed-phase high-performance liquid chromatography method development:Ⅰ. Application to 14 different samples using computer simulation[J]. J Chromatogr A, 1998,803(1-2):1
[25] ZHANG Y, CARR PW. A visual approach to stationary phase selectivity classification based on the Snyder-Dolan HydrophobicSubtraction Model[J]. J Chromatogr A, 2009, 1216(39):6685
[26] ZHANG WQ, HU QX, ZHANG X, et al. The selection of suitable columns for a reversed-phase liquid chromatographic separation of beta-lactam antibiotics and related substances via chromatographic column parameters[J]. J Chromatogr A, 2014, 1323:87
[27] ŽUVELA P, LIU JJ, PLENIS A, et al. Assessment of column selection systems using Partial Least Squares[J]. J Chromatogr A, 2015, 1420:74
[28] ZHANG X, HU CQ. Selecting optimal columns for clarithromycin impurity analysis according to the quantitative relationship of hydrophobic subtraction model[J]. J Pharm Biomed Anal, 2017, 136:162
[29] WILSON NS, NELSON MD, DOLAN JW, et al. Column selectivity in reversed-phase liquid chromatography:Ⅱ. Effect of a change in conditions[J]. J Chromatogr A, 2002, 961(2):195
[30] SNYDER LR, MAULE A, HEEBSH A, et al. A fast, convenient and rugged procedure for characterizing the selectivity of alkyl-silica columns[J]. J Chromatogr A, 2004,1057(1-2):49
[31] GILROY JJ, DOLAN JW, CARR PW, et al. Column selectivity in reversed-phase liquid chromatography:Ⅴ. Higher metal content (type-A)alkyl-silica columns[J]. J Chromatogr A, 2004, 1026(1-2):77
[32] WILSON NS, GILROY J, DOLAN JW, et al. Column selectivity in reversed-phase liquid chromatography:Ⅵ. Columns with embedded or end-capping polar groups[J]. J Chromatogr A, 2004, 1026(1-2):91
[33] MARCHAND DH,CROES K,DOLAN JW,et al. Column selectivity in reversed-phase liquid chromatography:Ⅶ. Cyanopropyl columns[J]. J Chromatogr A, 2005,1062(1):57
[34] MARCHAND DH,CROES K,DOLAN JW,et al. Column selectivity in reversed-phase liquid chromatography:Ⅷ. Phenylalkyl and fluoro-substituted columns[J]. J Chromatogr A, 2005,1062(1):65
[35] GUILLARME D, DONG MW. Newer developments in HPLC impacting pharmaceutical analysis:a brief review[J]. Am Pharm Rev,2013, 16(4):36
[36] GUILLARME D, NGUYEN DT, RUDAZ S, et al. Method transfer for fast liquid chromatography in pharmaceutical analysis:application to short columns packed with small particle. Part I:isocratic separation[J]. Eur J Pharm Biopharm, 2007, 66(3):475
[37] GUILLARME D, NGUYEN DT, RUDAZ S, et al. Method transfer for fast liquid chromatography in pharmaceutical analysis:application to short columns packed with small particle. Part Ⅱ:gradient experiments[J]. Eur J Pharm Biopharm,2008,68(2):430
[38] DONG MW,ZHANG K. Ultra-high-pressure liquid chromatography (UHPLC)in method development[J]. Trends Anal Chem, 2014, 63:21
[39] NEUE UD, MCCABE D, RAMESH V, et al. Transfer of HPLC procedures to suitable columns of reduced dimensions and particle sizes[J]. Pharm Forum, 2009, 35(6):1622
[40] DEBRUS B, ROZET E,HUBERT P, et al. Method transfer between conventional HPLC and UHPLC[M]//GUILLARME D, VEUTHEY J. UHPLC in Life Sciences. Cambridge:Royal Society of Chemistry, 2012:67
[41] MAZZEO JR, NEUE UD, KELE M, et al. Advancing LC performance with smaller particles and higher pressure[J]. Anal Chem,2005, 77(23):460A
[42] FOUNTAIN KJ, IRANETA PC. Instrumentation and columns for UHPLC separations[M]//GUILLARME D, VEUTHEY J. UHPLC in Life Sciences. Cambridge:Royal Society of Chemistry, 2012:29
[43] MCCALLEY DV. Shell particles and UHPLC technologies for fast analysis of polar compounds in the HILIC mode[M]//GUILLARME D, VEUTHEY J. UHPLC in Life Sciences. Cambridge:Royal Society of Chemistry, 2012:164
[44] KOTONI D, CIOGLI A, MOLINARO C, et al. Introducing enantioselective ultrahigh-pressure liquid chromatography (eUHPLC):theoretical inspections and ultrafast separations on a new sub-2-μm Whelk-O1 stationary phase[J]. Anal Chem, 2012,84(15):6805
[45] JANCO M, ALEXANDER JN, BOUVIER ES, et al. Ultra-high performance size-exclusion chromatography of synthetic polymers[J]. J Sep Sci, 2013, 36(17):2718
[46] REA JC, WANG YJ, ZHANG T. UHPLC for Characterization of Protein Therapeutics[M]//XU QA. Ultra-High Performance Liquid Chromatography and its Applications. New Jersey:John Wiley & Sons, 2013:235
[47] FEKETE S, SCHAPPLER J, VEUTHEY JL, et al. Current and future trends in UHPLC[J]. TrAC Trends Anal Chem, 2014,63:2
[48] KORMANY R, MOLNAR I, RIEGER HJ. Exploring better column selectivity choices in ultra-high performance liquid chromatography using quality by design principles[J]. J Pharm Biomed Anal,2013, 80:79
[49] WANG J, GUO Z, SHEN A, et al. Hydrophilic-subtraction model for the characterization and comparison of hydrophilic interaction liquid chromatography columns[J]. J Chromatogr A, 2015, 1398:29
[50] WEST C, KHALIKOVA MA, LESELLIER E, et al. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography[J]. J Chromatogr A, 2015, 1409:241