关闭
 
读者在线:用户名 密码
首页 期刊简介 投稿须知 期刊目录 专家风采 编委会 特邀顾问 联系我们 移动出版
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5



刊物信息

期刊名称:药物分析杂志
主管单位:中国科学技术协会
主办单位:中国药学会
承办:中国食品药品检定研究院
主编:金少鸿
地址:北京天坛西里2号
邮政编码:100050
电话:010-67012819,67058427
电子邮箱:ywfx@nifdc.org.cn
国际标准刊号:ISSN 0254-1793
国内统一刊号:CN 11-2224/R
邮发代号:2-237
 

访问统计
您是第  1 0 3 3 0 7 7 2 位浏览者
您当前的位置:首页 >> 正文

“刷型”手性固定相在D-氨基酸分析中的应用

Brush-type chiral stationary phases and their applications in D-amino acids analysis

作者(英文):
分类号:R917
出版年·卷·期(页码):2017,37 (3):369-377
DOI: 10.16155/j.0254-1793.2017.01.01
-----摘要:-------------------------------------------------------------------------------------------

氨基酸是组成蛋白质的基本单元,在人体及动物生命活动中起着举足轻重的作用。光学纯氨基酸是合成多肽和内酰胺类抗生素等药物的重要中间体,在药物合成、新材料开发、食品添加剂和精细化学品的研发等方面都具有巨大的应用价值。近年来,D-氨基酸的重要生理机能(作为疾病标志物等)研究已逐渐成为作用于神经及内分泌系统的新型药物开发或疾病新诊断方法研发等领域的热点。但是在生物样品中往往存在大量的L-氨基酸,不利于体内微量D-氨基酸的分析研究,因此开发有效的氨基酸手性拆分方法意义重大。在常见的手性拆分方法中,手性固定相(CSP)色谱法因具有准确、快速及固定相选择范围宽等特点,现已在液相色谱等领域得到了广泛应用。以氨基酸及金鸡纳类等为手性选择剂的“刷型”手性固定相是D-氨基酸液相色谱分析中非常重要的一类手性固定相,同时也是手性液相色谱领域使用量大,适用面广,对手性识别机理揭示较深的一类固定相。它的识别是基于手性分子和固定相之间的氢键作用、π-π作用、偶极堆积作用等实现的。针对近年来“刷型”手性固定相的快速发展,本文详尽地介绍了目前常用的Sumichiral OA 型、金鸡纳类(奎尼丁或者奎宁)等手性固定相在D-氨基酸分离分析中的应用情况。

-----英文摘要:---------------------------------------------------------------------------------------

Amino acids are important structural units of proteins,which play indispensable roles in human and animal physiological activities. Optically pure amino acids are used as intermediates or additives in several industries,such as pharmaceuticals,food,agriculture etc.. Recently,the physiological and pathological importance of D-amino acids have been well understood,which provides useful hints for the development of drugs and functional foods. However,due to the fact that L-amino acids always exist in large amounts in most biological samples from mammalians,the analysis of the trace D-forms,is very difficult. Therefore,it is of great significance to develop a sensitive,rapid and highly efficient enantioselective strategy for the analysis of D-amino acids in biological samples. Currently,chiral liquid chromatography is the mainstream analytical approach for analyzing D-amino acids. Various chiral stationary phases(CSPs)have been widely used for the enantioseparation of amino acids. Among these CSPs,the cinchona and amino acid-functionalized brush-type CSPs have become popular because of their excellent enantioselectivity toward various kinds of N-derivatized amino acids. The enantio-recognition mechanism of Brush-type CSPs toward amino acids is based on the hydrogen bonding,π-π interaction,dipole stacking interaction between molecules and CSPs. This article reviews various of commonly used Sumichiral OA type and cinchona type CSPs and their applications in the analysis of D-amino acids.

-----参考文献:---------------------------------------------------------------------------------------

[1] MORENO-GUZMAN M,GARCIA-CARMONA L,MOLINEROFERNANDEZ A,et al. Bi-enzymatic biosensor for on-site,fast and reliable electrochemical detection of relevant D-amino acids in bacterial samples[J]. Sens Actuators B,2017,242(1):95
[2] HASHIMOTO A,NISHIKAMA T,HAYASHI T,et al. The presence of free D-serine in rat brain[J]. Febs Lett,1992,296(1):33
[3] KIM PM,DUAN X,HUANG AS,et al. Aspartate racemase, generating neuronal D-aspartate,regulates adult neurogenesis[J]. Proc Natl Acad Sci,2010,107(7):3175
[4] MIYOSHI Y,HAMASE K,TOJO Y,et al. Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection[J]. J Chromatogr B,2009,877(24):2506
[5] HAN H,MIYOSHI Y,UENO K,et al. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure[J]. J Chromatogr B,2011,879(29):3196
[6] SASABEA J,MIYOSHI Y,SUZUKI M,et al. D-amino acid oxidase controls motoneuron degeneration through D-serine[J]. Proc Natl Acad Sci,2012,109(2):627
[7] HAN H,WANG QQ,WU HH,et al. Establishment and application of an automated chiral two dimensional high performance liquid chromatography for Bio-analysis of D-acidic amino acids[J]. Chin J Anal Chem,2014,42(6):891
[8] KATO S,ISHIHARA T,HEMMI H,et al. Alterations in D-amino acid concentrations and microbial community structures during the fermentation of red and white wines[J]. J Biosci Bioeng,2011,111 (1):104
[9] TAO YQ,QUEBBEMANN NR,JULIAN RR,et al. Discriminating D-amino acid-containing peptide epimers by radical directed dissociation mass spectrometry[J]. Anal Chem,2012,84(15): 6814
[10] MUTAGUCHI Y,KOBAYASHI J,OIKAWA T,et al. D-amino acids in fermentative foods[M]/D-Amino Acids. Tokyo,Japan: Springer,2016:341
[11] SARDELLA R,CAROTTI A,GIOIELLO A,et al. Chromatographyic separation of free dafachronic acid epimers with a novel trizole click quinidine-based chiral stationary phase[J]. J Chromatogr A,2014, 1339(25):96
[12] PIETTE V,LAMMERHOFER M,BISCHOFF K,et al. Highperformance liquid chromatographic enantioseparation of N-protected α-amino acids using nonporous silica modified by a quinine carbamate as chiral stationary phase[J]. Chirality,1997,9 (2):157
[13] LAMMERHOFER M,LINDNER W. Quinine and quinidine derivatives as chiral selectors I. Brush type chiral stationary phases for high-performance liquid chromatography based on cinchonan carbamates and their application as chiral anion exchangers[J]. J Chromatogr A,1996,741(1):33
[14] PIETTE V,LAMMERHOFER M,LINDNER W,et al. Enantiomer separation of N-protected amino acids by non-aqueous capillary electrophoresis and high-performance liquid chromatography with tert-butyl carbamoylated quinine in either the background electrolyte or the stationary phase[J]. J Chromatogr A,2003,987(1-2):421
[15] LIU Z,OTSUKA K,TERABE S,et al. Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromatography[J]. Electrophoresis,2002,23(17):2973
[16] WANG Y,ONG TT,LI LS,et al. Enantioseparation of a novel“ click” chemistry derived native β-cyclodextrin chiral stationary phase for high-performance liquid chromatography[J]. J Chromatogr A, 2009,1216(12):2388
[17] ISLAM MF,LEE W. Liquid chromatographic enantiomer separation of α -amino acid esters as nitrobenzoxadiazole derivatives using polysaccharide-derived chiral stationary phases[J]. J Chosun Nat Sci,2015,8(2):111
[18] LEE MS,KHAN FN,SHIN SC,et al. Comparison of polarimetry and crown ether-based HPLC chiral stationary phase method to determine(L)-amino acid optical purity[J]. Food Chem,2012, 135(2):343
[19] SCHMID MG,SCHREINER K,REISINGER D,et al. Fast chiral separation by ligand-exchange HPLC using a dynamically coated monolithic column[J]. J Sep Sci,2006,29(10):1470
[20] LLISZ I,BERKECZ R,PÉTER A. HPLC separation of amino acid enantiomers and small peptides on macrocyclic antibiotic-based chiral stationary phases:a review[J]. J Sep Sci,2006,29(10): 1305
[21] DAPPEN R,ARM H,MEYER VR. Applications and limitations of commercially available chiral stationary phases for high-performance liquid chromatography[J]. J Chromatogr A,1986,373:1
[22] PIRKLE WH,FINN JM,SCHREINER JL,et al. A widely useful chiral stationary phase for the high-performance liquid chromatography separation of enantiomers[J]. J Am Chem Soc, 1981,103(13):3964
[23] PIRKLE WH,HYUN MH. A chiral stationary phase for the facile resolution of amino acids,amino alcohols and amines as the N-3, 5-dinitrobenzoyl derivatives[J]. J Org Chem,1984,49(17):3043
[24] OHKUBO T,TNO S,SUGAWARA K,et al. Enantiomer separation of dihydropyridine derivative calcium antagonists by highperformance liquid chromatography with chiral stationary phases[J]. J Chromatogr A,1994,659(2):467
[25] HAMASE K,MORIKAWA A,OHGUSU T,et al. Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching highperformance liquid chromatographic system combining reversedphase and enantioselective columns[J]. J Chromatogr A,2007, 1143(1-2):105
[26] KATO M,DULAY MT,BENNETT B,et al. Enantiomeric separation of amino acids and nonprotein amino acids using a particle-loaded monolithic column[J]. Electrophoresis,2000,21(15):3154
[27] KATO M,FUKUSHIMA T,SANTA T. Preparation and evaluation of new Pirkle type chiral stationary phases with long alkyl chains for the separation of amino acid enantiomers derivatized with NBD-F[J]. Analyst,1998,123:2877
[28] 徐修容,唐琴梅,施铭英. 高效液相色谱手性固定相的研究 Ⅱ、数 种L-缬氨酸-酰胺型固定相的制备及拆分对映体的比较[J]. 色谱,1984,1(1):22 XU XR,TANG QM,SHI MY. Stationary phase in liquid chromatography Ⅱ,preparation of a series of substituted L-valylamide type bonded phases and comparison in resolution of enantionmers[J]. Chin J Chromatogr,1984,1(1):22
[29] 刘晋钫,徐修容,黄嘉鑫. 高效液相色谱手性固定相的研 V-二肽 叔丁酰胺型手性固定相拆分α-氨基酸、二茂铁基氨基酸及二 生物对映异构体[J]. 色谱,1990,8(4):229 LIU JF,XU XR,HUANG JX. Chiral stationary phases in liquid chromatography V,resolution of racemic derivatives of α-amino acid,ferrocenyl amino acid,and dipeptide on tert-butylamide bonded phases[J]. Chin J Chromatogr,1990,8(4):229
[30] 祝馨怡,蔡迎春,陈立仁. α-氨基酸在L-苯丙氨酸手性配体交 换色谱固定相上的分研究[J]. 化学试剂,2003,25(2):65 ZHU XY,CAI YC,CHEN LR. Study on the enantioseparation of amino acids by high performance ligand-exchange chromatography on L-phenylalanine chiral stationary phases[J]. Chem Reagents, 2003,25(2):65
[31] BUNCH DR,WANG S. Applications of monolithic columns in liquid chromatography-based clinical chemistry assays[J]. J Sep Sci, 2011,34(16-17):2003
[32] AGGARWAL P,TOLLEY HD,LEE ML. Monolithic bed structure for capillary liquid chromatography[J]. J Chromatogr A,2012, 1219(6):1
[33] CABRERA K. Applications of silica-based monolithic HPLC columns[J]. J Sep Sci,2004,27(10-11):843
[34] HOSOYA K,HIRA N,YAMAMOTO K,et al. High-performance polymer-based monolithic capillary column[J]. Anal Chem,2006, 78(16):5729
[35] HE J,WANG XC,MIKE M,et al. Amino acid bound surfactants:a new synthetic family of polymeric monoliths opening up possibilities for chiral separations in capillary electrochromatography[J]. Anal Chem,2012,84(12):5236
[36] OYAMA T,NEGISHI E,ONIGAHARA H,et al. Design and synthesis of a novel pre-column derivatization reagent with a 6-methoxy-4-quinolone moiety for fluorescence and tandem mass spectrometric detection and its application to chiral amino acid analysis[J]. J Pharm Biomed Anal,2015,116(10):71
[37] NAOBUMI O,HAJIMU K,et al. Enantiomer separation by HPLC with some urea derivatives of L-valine as novel chiral stationary phases[J]. J Liq Chromatogr,1986,9(2-3):511
[38] 董斌,姜珍,梁爱仙. OA-2500S 手性柱拆分3 种氨基酸对映体[J]. 西北药学杂志,2010,25(5):325 DONG B,JIANG Z,LIANG AX. Separation of three kinds of amino acid enantiomers on OA-2500S[J]. Northwest Pharm J,2010,25 (5):325
[39] MIYOSHI Y,NAGANO M,ISHIGO S,et al. Chiral amino acid analysis of Japanese traditional Kurozu and the developmental changes during earthenware jar fermentation processes[J]. J Chromatogr B,2014,966(1):187
[40] KOGA R,MIYOSHI Y,NEGISHI E,et al. Enantioselective twodimensional high-performance liquid chromatographic determination of N-methyl-D-aspartic acid and its analogues in mammals and bivalves[J]. J Chromatogr A,2012,1269(21):255
[41] HAMASE K,MIYOSHI Y,UENO K,et al. Simultaneous determination of hydrophilic amino acid enantiomers in mammalian tissues and physiological fluids applying a fully automated microtwo-dimensional high-performance liquid chromatographic concept[J]. J Chromatogr A,2010,1217(7):1056
[42] KARAKAWA S,MIYOSHI Y,KONNO R,et al. Two-dimensional high-performance liquid chromatographic determination of daynight variation of D-alanine in mammals and factors controlling the circadian changes[J]. Anal Bioanal Chem,2013,405(25):8083
[43] MIYOSHI Y,OYAMA T,ITOH Y,et al. Enantioselective twodimensional high-performance liquid chromatographic determination of amino acids;analysis and physiological significance of D-amino acids in mammals[J]. Chromatography,2014,35(1):49
[44] HAMASE K,NAKAUCHI Y,MIYOSHI Y,et al. Enantioselective determination of extraterrestrial amino acids using a two-dimensional chiral high-performance liquid chromatographic system[J]. Chromatography,2014,35(2):103
[45] CUI Y,JIANG Z,SUN JY,et al. Enantiomeric purity determination of(L)-amino acids with pre-column derivatization and chiral stationary phase:Development and validation of the method[J]. Food Chem,2014,158(1):401
[46] HANG Y,NISHIKAWA T,SATOH K,et al. Urinary excretion of D-serine in human:comparison of different ages and species[J]. Biol Pharm Bull,1998,21(2):156
[47] 沈含熙,杨国生,高如琦. 高效液相色谱手性固定相对氨基酸衍 生物对映体分离研究[J]. 高等学校化学简报,1997,16(7): 1072 SHEN HX,YANG GS,GAO RQ. Studies on separation of derivatives of amino acid of enantiomers on chiral stationary phase by high performance liquid chromatography[J]. Chin J Chin Univ, 1997,16(7):1072
[48] 杨亚娜,张敏如. 金鸡纳生物碱在手性分离中的应用[J]. 中国 医药工业杂志,2006,37(8):563 YANG YN,ZHANG MR. Application of cinchona in chiral separation[J]. Chin J Pharm,2006,37(8):563
[49] LAMMERHOFER M,GYLLENHAAL O,LINDNER W. HPLC enantiomer separation of a chiral 1,4-dihydropyridine monocarboxylic acid[J]. J Pharm Biomed Anal,2004,35(2):259
[50] BICKER W,LAMMERHOFER M,LINDNER W. Direct highperformance liquid chromatographic method for enantioselective and diastereoselective determination of selected pyrethroic acids[J]. J Chromatogr A,2004,1035(1):37
[51] ROSINI C,BERTUCCI C,PINI D,et al. Cinchona alkaloids for preparing new,easily accessible chiral stationary phases. I. 11-(10,11-dihydro-6-methoxy-cinchonan-9-OL)-tiopropylsilanized silica[J]. Tetra Lett,1985,26(28):3361
[52] HAMASE K,MORIKAWA A,OHGUSU T,et al. Comprehensive analysis of branched aliphatic D-amino acids in mammals using an integrated multi-loop two-dimensional column-switching highperformance liquid chromatographic system combining reversedphase and enantioselective columns[J]. J Chromatogr A,2007, 1143(1-2):105
[53] HAN H,MIYOSHI Y,KOGA R,et al. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities[J]. J Pharm Biomed Anal,2015,116(10):47
[54] LAMMERHOFER M,SVEC F,FRECHET JMJ,e t a l. Chiral monolithic columns for enantioselective capillary electrochromatography prepared by copolymerization of a monomer with quinidine functionality. 2. Effect of chromatographic conditions on the chiral separations[J]. Anal Chem,2000,72(19):4623
[55] LAMMERHOFER M,SVEC F,FRECHET JMJ,et al. Monolithic stationary phases for enantioselective capillary electrochromatography[J]. J Microcolumn Sep,2000,12(12):597
[56] LAMMERHOFER M,GARGANO A. Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography[J]. J Pharm Biomed Anal,2010,53(5):1091
[57] WANG QQ,FENG J,HAN H,et al. Enantioseparation of N-derivatized amino acids by micro-liquid chromatography using carbamoylated quinidine functionalized monolithic stationary phase[J]. J Chromatogr A,2014,1363(10):207
[58] WU HH,WANG QQ,RUAN M,et al. Enantioseparation of N-derivatized amino acids by micro-liquid chromatography/laser induced fluorescence detection using quinidine-based monolithic columns[J]. J Pharm Biomed Anal,2016,121(20):244
[59] 唐琴,陈先勇,宋航. 丙卡特罗在三种刷型手性固定相上的直接 拆分[J]. 分析测试学报,2010,29(4):407 TANG Q,CHEN XY,SONG H. Study on direct separation of drug procaterol enantiomers by using three brush type CSPs[J]. J Instrum Anal,2010,29(4):407
[60] WILLIAM HP,CHRISTOPHER JW. An improved chiral stationary phase for the chromatographic separation of underivatized naproxen enantiomers[J]. J Liq Chromatogr,1992,15(11):1947
[61] MICHAEL DS,JEAN MJF,FRANTISEK S. In-column preparation of a brush-type chiral stationary phase using click chemistry and a silica monolith[J]. J Sep Sci,2009,32(1):21

欢迎阅读《药物分析杂志》!您是该文第 541位读者!

药物分析杂志 © 2009
地址:北京天坛西里2号 邮政编码:100050; 电子邮件:ywfx@nicpbp.org.cn