

齿叶薰衣草中木犀草苷等 4 个成分的含量测定及指纹图谱研究*

李晨阳,陈燕,胡旭,姚雨含,赵军,徐芳**

(新疆维吾尔自治区药物研究所,乌鲁木齐830004)

摘要 目的: 建立齿叶薰衣草药材中木犀草苷、木犀草素 $-7-O-\beta-D-$ 葡萄糖醛酸苷、迷迭香酸和木犀草素的含量测定方法,为其质量控制提供科学依据。方法: 采用 HPLC 法测定;色谱条件: Phenomenex Gemini 色谱柱(250 mm×4.6 mm,5 μ m),流动相为乙腈和 0.2 % 磷酸二元梯度洗脱,流速 1.0 mL·min⁻¹,柱温 30 °C,检测波长 350 nm。结果: 木犀草苷、木犀草素 $-7-O-\beta-D-$ 葡萄糖醛酸苷、迷迭香酸和木犀草素的进样量在 $0.004\sim0.20$ 、 $0.008\sim0.39$ 、 $0.002\sim1.05$ 、 $0.004\sim0.22$ μ g 范围内与峰面积呈良好的线性关系(r=0.9998~0.999 9),平均回收率在 101.3% %~103.6%之间(RSD<100.0000, 1

关键词: 齿叶薰衣草; 木犀草苷; 木犀草素 -7-0-β-D-葡萄糖醛酸苷; 迷迭香酸; 木犀草素; 高效液相色谱法; 含量测定; 指纹图谱

中图分类号: R 917 文献标识码: A 文章编号: 0254-1793(2019)12-2234-07

doi: 10.16155/j.0254-1793.2019.12.16

Determination of luteoloside and other three compounds in Lavandula dentata L. and study on its fingerprint*

LI Chen-yang, CHEN Yan, HU Xu, Yao Yu-han, ZHAO Jun, XU Fang**

(Xinjiang Institute of Materia Medica, Urumqi 830004, China)

Abstract Objective: To establish the determination method luteoloside, luteolin–7–O– β –D–glucuronide, rosmarinic acid and luteolin in *Lavandula dentata* L., so as to offer scientific basis for quality standard of the herb. **Methods:** The HPLC separation was performed on a Phenomenex Gemini column (250 mm × 4.6 mm, 5 μ m) at 30 °C with gradient elution of acetonitrile and 0.2% phosphate acid solution at a flow rate of 1.0 mL·min⁻¹. The detection wavelength was set at 350 nm. **Results:** Luteoloside, luteolin–7–O– β –D–glucuronide, rosmarinic acid and luteolin exhibited good linearities (r=0.999 8–0.999 9) and the linear ranges were 0.004–0.20 μ g, 0.008–0.39 μ g, 0.002–1.05 μ g and 0.004–0.22 μ g, respectively. The average recoveries (RSD<2%, n=6) were L.. between 101.3%–103.6%. HPLC fingerprints of 11 batches of *Lavandula dentata* L.11

药物分析杂志

^{*} 新疆维吾尔自治区卫生厅青年科技人才专项科研项目(2013Y04)

^{**} 通信作者 Tel:(0991)2320227; E-mail: xufangxj@163.com 第一作者 Tel:(0991)2320227; E-mail: licy0609@126.com

common peaks were selected and 4 of them were identified. **Conclusion:** The method is simple and repeatable, and it can be used for the quality control of *Lavandula dentata* L..

Keywords: *Lavandula dentata* L.; luteoloside; luteolin-7-*O*- β-*D*-glucuronide; rosmarinic acid; luteolin; HPLC; determination; fingerprint

齿叶薰衣草(又称锯齿薰衣草)为唇形科植物 齿叶薰衣草 Lavandula dentata L. 的干燥花序。课 题组前期调研发现,新疆各地维吾尔药材市场和医 院流通的薰衣草商品药材主要为狭叶薰衣草和齿 叶薰衣草,狭叶薰衣草主要来源于新疆伊犁地区, 齿叶薰衣草主要来源于巴基斯坦、印度进口。中国 从1952年开始,从法国引种狭叶薰衣草在新疆等 地大面积种植,目前,国内外对狭叶薰衣草化学成 分及药理活性研究已经有很多报道[1-3],但对齿叶 薰衣草化学成分分析的研究甚少[4]。在新疆,维 吾尔医最早使用的是印度和巴基斯坦产的齿叶薰 衣草[5],齿叶薰衣草作为药物具有驱虫、消炎、镇 静、止痛等功效,其中提取得到的精油具有抗菌, 抗氧化性,治疗高血压,镇静催眠和神经保护等作 用[6]。课题组前期对齿叶薰衣草进行了初步的分 离鉴定研究,从中分离得到了以木犀草素、芹菜素 为代表的黄酮类成分,这类成分是齿叶薰衣草非精 油部分的主要标识性成分,这些成分以其显著的 生物活性在药品、食品、化妆品领域有着广泛的应 用[7-10]。因此本文对齿叶薰衣草中的木犀草苷、木 犀草素 -7-O-β-D-葡萄糖醛酸苷、迷迭香酸、木犀 草素 4 个成分进行含量测定,同时建立齿叶薰衣草 指纹图谱,并与狭叶薰衣草进行对比,为能更好地利 用齿叶薰衣草资源提供科学依据。

1 仪器与试药

1.1 仪器

安捷伦 1260 DAD 高效液相色谱仪(安捷伦公司);梅特勒 AL204 型电子天平(梅特勒 – 托利多上海有限公司); HH 型恒温水浴锅(金坛科析仪器有限公司); AS10200AD 型超声波清洗器(天津奥特赛恩斯仪器有限公司)。

1.2 试药

对照品木犀草苷(批号111720-201106)、木犀草素 $-7-O-\beta-D$ -葡萄糖醛酸苷(批号111968-201301)和木犀草素(批号111520-200504)均购

于中国食品药品检定研究院;迷迭香酸对照品(批号 MUST-1202702)购于成都曼思特生物科技有限公司。乙腈(色谱纯, Fisher 公司);甲醇(色谱纯, Fisher 公司);水(实验室自制);磷酸等其他试剂为国产分析纯。齿叶薰衣草药材购自新疆不同地区维吾尔药材市场和维吾尔医院,其中第1~6批、第8批、第10批、第11批由巴基斯坦进口,第7批和第9批由印度进口,均经新疆维吾尔自治区药物研究所何江副研究员鉴定为齿叶薰衣草 Lavandula dentata L. 的干燥花序。

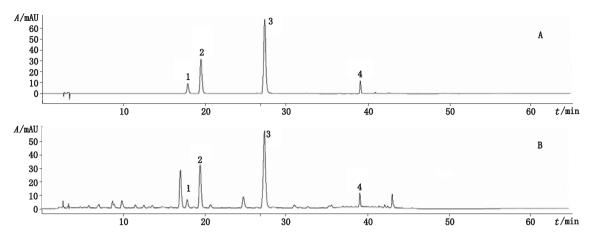
2 方法与结果

2.1 色谱条件与系统适用性

色谱柱: Phenomenex Gemini 色谱柱 (250 mm × 4.6 mm, 5 μ m); 流动相: 乙腈 (A) –0.2 % 磷酸水溶液 (B) 二元梯度洗脱 (0~30 min, 15%A \rightarrow 23%A; 30~40 min, 23%A \rightarrow 40%A; 40~55 min, 40%A \rightarrow 15%A); 流速: 1.0 mL·min⁻¹; 柱温: 30 °C; 检测波长: 350 nm; 进样量: 10 μ L。在上述色谱条件下,药材中木犀草苷、木犀草素 $-7-O-\beta-D-$ 葡萄糖醛酸苷、迷迭香酸和木犀草素的色谱峰与其他成分分离度良好,均大于 1.5, 理论塔板数均大于 2 000。结果见图 1。

2.2 供试品溶液的制备

取齿叶薰衣草药材,粉碎(过40目筛),称取约0.3g,精密称定,置圆底烧瓶中,加入60%甲醇120mL加热回流提取30min,滤过,将滤液减压浓缩至25mL量瓶中,用微孔滤膜(0.45 µm)滤过,取续滤液,即得。


2.3 对照品储备液的制备

精密称取木犀草苷对照品适量,精密称定,加甲醇制成每1mL含0.1002mg的木犀草苷对照品储备溶液。

精密称取木犀草素 $-7-O-\beta-D$ - 葡萄糖醛酸苷对照品适量,精密称定,加甲醇制成每 1 mL 含 0.207 2 mg 的木犀草素 $-7-O-\beta-D$ - 葡萄糖醛酸苷对照品储备溶液。

药物分析杂志

1. 木犀草苷(luteoloside) 2. 木犀草素 -7-O-β-D-葡萄糖醛酸苷(luteolin-7-O-β-D-glucuronide) 3. 迷迭香酸(rosmarinic acid) 4. 木犀草素(luteolin)

图 1 对照品(A)和样品(B)HPLC色谱图

Fig. 1 HPLC chromatograms of reference substance (A) and Lavandula dentata L. (B)

精密称取迷迭香酸对照品适量,精密称定,加甲醇制成每1 mL 含 0.535 2 mg 的迷迭香酸对照品储备溶液。

精密称取木犀草素对照品适量,精密称定,加甲醇制成每1 mL 含 0.110 8 mg 的木犀草素对照品储备溶液。

2.4 线性关系考察

分别精密量取"2.3"项下方法制备的各对照品储备液适量,用甲醇稀释,配成质量浓度分别为0.40、1.00、1.99、4.98、9.95、14.92、19.90 μg·mL⁻¹ 木犀草苷对照品溶液,质量浓度分别为0.77、1.93、

3.87、9.67、19.33、29.00、38.66 $\mu g \cdot m L^{-1}$ 木 犀 草 素 – 7-O- β -D- 葡萄糖醛酸苷对照品溶液,质量浓度分别 为 2.10、5.25、10.49、26.23、52.45、78.67、104.90 $\mu g \cdot m L^{-1}$ 迷 迭 香 酸 对 照 品 溶 液,质量 浓 度 分 别 为 0.44、1.10、2.20、5.50、11.00、16.50、22.00 $\mu g \cdot m L^{-1}$ 木 犀 草 素 对 照 品 溶 液,按 "2.1.1" 色 谱 条 件 测定,精 密 吸 取 各 对 照 品 溶 液 10 μL ,注 入 液 相 色 谱 仪,记 录 峰 面 积。以 峰 面 积 Y 为 纵 坐 标,以 质量 浓 度 (X, $m g \cdot m L^{-1}$) 为 横 坐 标,进 行 线 性 回 归,以 信 噪 比 (SIN) 为 10:1 为 基 准 测 得 各 成 分 的 定 量 下 限,结果 见 表 1。

表 1 线性关系考察结果(n=6)

Tab. 1 Results of linear relation

成分 (component)	回归方程 (regression equation)	r	线性范围 (linear range)/µg	定量下限 (LOQ)/(mg · mL ⁻¹)
木犀草苷(luteoloside)	$Y=2.810 \times 10^4 X + 0.5835$	0.999 9	0.004~0.20	0.199 0
木犀草素 $-7-O-\beta$ $-D-$ 葡萄糖醛酸苷 (luteolin- $7-O-\beta$ $-D$ -glucuronide)	$Y=2.706 \times 10^4 X-5.429 $ 4	0.999 9	0.008~0.39	0.257 8
迷迭香酸(rosmarinic acid)	$Y=1.764 \times 10^4 X + 13.023$	0.999 8	0.002~1.05	0.052 4
木犀草素 (luteolin)	$Y=4.331 \times 10^4 X-0.4057$	0.999 9	0.004~0.22	0.110 2

2.5 精密度试验

取同一混合对照品溶液,在"2.1.1"项色谱条件下连续进样 6 次测定,记录峰面积。计算木犀草苷、木犀草素 -7-*O*-β-*D*-葡萄糖醛酸苷、迷迭香酸和木犀草素峰面积的 RSD 分别为 1.3%、0.48%、1.6%、0.13%,表明仪器精密度良好。

2.6 重复性试验

精密称取齿叶薰衣草药材粉末样品 6 份,分别按"2.2"项下方法制备供试品溶液,按"2.1.1"项下色谱条件进行测定,测得样品中木犀草苷、木犀草素 -7-O-β-D-葡萄糖醛酸苷、迷迭香酸和木犀草素的平均含量分别为 0.35、1.68、5.68、0.20 mg·g⁻¹, RSD

药物分析杂志

Journal of Pharmaceutical Analys

www.ywfxzz.cn

分别为 0.55%、0.93%、0.88%、1.85%, 表明方法重复 性较好。

2.7 稳定性试验

取同一份供试品溶液,室温下放置 0、2、4、6.5、18、24 h,按 "2.1" 项下色谱条件进行测定,测得样品中木犀草苷、木犀草素 -7-*O*-β-*D*-葡萄糖醛酸苷、迷迭香酸和木犀草素平均含量的 RSD 分别为 1.3%、0.53%、1.5%、0.47%,表明供试品溶液在 24 h 内稳定。

2.8 日间精密度试验

取同一批齿叶薰衣草药材连续 6 d, 在相同时间 段取样处理并测定, 测定样品中木犀草苷、木犀草素 -7-O-β-D-葡萄糖醛酸苷、迷迭香酸和木犀草素平均含量的 RSD 分别为 1.7%、1.2%、2.0%、1.9%。

2.9 回收率测定

分别准确称取已测含量的齿叶薰衣草粉末6份,每份约0.15g,精密称定,分别精密加入与样品中各成分等量的单一成分对照品,按"2.2"项下方法制备供试溶液,按"2.1.1"项下色谱条件进行测定,结果见表2。由表可见,平均回收率分别为103.6%、101.3%、102.5%、101.5%,各成分回收率的RSD均小于2%,表明本方法具有良好的准确度。

表 2 加样回收率试验结果(n=6)

Tab. 2 Results of recovery tests

	1 av. 2	Results of Te	- Covery tests			
成分 (component)	样品含量 (content)/mg	加入量 (added)/mg	测得量 (found)/mg	回收率 (recovery)/%	平均回收率(average recovery)/%	RSD/%
木犀草苷(luteoloside)	0.045 39	0.044 08	0.091 04	103.5	103.6	0.9
	0.045 00	0.044 08	0.090 86	104.0		
	0.046 35	0.044 08	0.092 56	104.8		
	0.045 03	0.044 08	0.090 51	103.2		
	0.045 09	0.044 08	0.090 95	104.0		
	0.045 06	0.044 08	0.090 06	102.1		
木犀草素 -7-O-β-D-葡萄糖醛酸苷 (luteolin-7-O-β-D-glucuronide)	0.257 21	0.227 92	0.486 63	100.7	101.3	1.7
	0.255 00	0.227 92	0.486 91	101.7		
	0.262 65	0.227 92	0.498 36	103.4		
	0.255 17	0.227 92	0.479 70	98.5		
	0.255 51	0.227 92	0.489 13	102.5		
	0.255 34	0.227 92	0.485 06	100.8		
迷迭香酸(rosmarinic acid)	0.862 41	0.816 64	1.706 06	103.3	102.5	1.7
	0.855 00	0.816 64	1.686 94	101.9		
	0.880 65	0.816 64	1.736 95	104.9		
	0.855 57	0.816 64	1.685 10	101.6		
	0.856 71	0.816 64	1.700 82	103.4		
	0.856 14	0.816 64	1.672 91	100.0		
木犀草素 (luteolin)	0.030 26	0.027 7	0.057 90	99.8	101.5	1.3
	0.030 00	0.027 7	0.058 25	102.0		
	0.030 90	0.027 7	0.058 94	101.2		
	0.030 02	0.027 7	0.058 42	102.5		
	0.030 06	0.027 7	0.058 60	103.0		
	0.030 04	0.027 7	0.057 79	100.2		

药物分析杂志

2.10 11 批样品中 4 个成分的含量测定

分别取 11 批齿叶薰衣草,按"2.2"项下方法制备供试品溶液,按"2.1.1"项色谱条件下进行测定,计算样品中木犀草苷、木犀草素 -7-*O*-β-*D*-葡萄糖醛酸苷、迷迭香酸和木犀草素的含量,结果见表 3。

表 3 样品中 4 个成分含量测定结果(mg·g⁻¹)

Tab. 3 Results of content determination of samples

样品号 (sample No.)	木犀草苷 (luteoloside)	木犀草素 -7-O-β-D- 葡萄糖醛酸苷 (luteolin- 7-O-β-D-glucuronide)	(rosmarinic	木犀草素 (luteolin)
1	0.326	1.763	4.986	0.068
2	0.117	0.898	1.969	0.273
3	0.339	1.650	5.628	0.222
4	0.315	1.873	6.278	0.045
5	0.195	1.276	2.647	0.268
6	0.241	1.249	3.819	0.106
7	0.261	1.615	5.666	0.084
8	0.208	1.348	3.811	0.139
9	0.214	1.463	5.122	0.077
10	0.243	1.254	3.349	0.062
11	0.180	1.124	2.760	0.059

2.11 齿叶薰衣草的指纹图谱研究

2.11.1 共有峰的确定及方法学验证 采用中药色谱指纹图谱相似度评价系统(2012 版软件)对 11 批齿叶薰衣草药材 HPLC 指纹图谱进行数据处理,确定共有峰 11 个,以相似度进行指纹图谱方法学考察,测定方法与"2.1.1"项相同。结果显示,以迷迭香酸色谱峰为对照,比较各主要峰的相对保留时间和相对峰面积,精密度、重复性和稳定性试验中相对保留时间结果均 RSD<1%,占总峰面积百分比 5% 以上的共有峰面积均 RSD<3%,表明方法学验证符合指纹图谱技术要求。

2.11.2 相似度计算及对照指纹图谱的生成 采用中药色谱指纹图谱相似度评价系统(2012版软件)对 11 批齿叶薰衣草样品进行分析,采用中位数法对各指纹图谱色谱峰进行了多点校正和自动匹配,以图 2 中 S2 为参照指纹图谱,计算相似度并生成对照指纹图谱,峰 4、5、8、10 分别是木犀草苷、木犀草素 -7-O-β-D-葡萄糖醛酸苷、迷迭香酸和木犀草素。计算得到的 11 批次样品与对照指纹图谱的相似度结果均大于 0.970。结果表明各批次药材之间有较好的一致性,所建立的 HPLC 指纹图谱可用于齿叶薰衣草的质量评价。

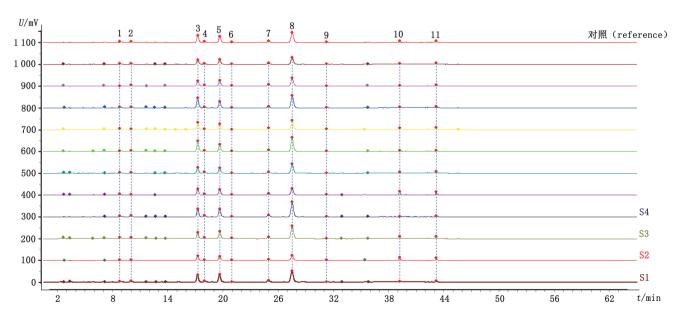


图 2 11 批次齿叶薰衣草药材的 HPLC 指纹图谱

Fig. 2 $\,$ HPLC fingerprints of 11 batches of Lavandula dentata L.

3 讨论

3.1 提取工艺考察

本研究考察了提取方式(超声、加热回流)、提 取溶剂(60%、80% 甲醇水溶液和30%、50%、70%、 95% 乙醇水溶液)、提取时间(0.5、1、1.5、2 h)和溶 剂倍量(100、200、300倍),以4个成分的含量为评 价指标,最终确定了供试品溶液的制备方法。

3.2 检测波长的选择

实验中以 DAD 检测器在 200~400 nm 对 4 个成 分进行光谱扫描,确定各成分在350 nm 处为最大吸 收波长,该波长下检测灵敏度高,干扰小。

3.3 4个成分含量差异大 本研究采用 HPLC 建 立了11批次不同产地齿叶薰衣草药材多成分含量 测定和指纹图谱、定性分析相结合的质量评价方 法[11-13]。对齿叶薰衣草中4个成分进行含量测定的 结果(表3)表明,第2批齿叶薰衣草药材中木犀草 苷、木犀草素 -7-0-β-D-葡萄糖醛酸苷、迷迭香酸

的含量在11批药材中最低,而木犀草素的含量却在 11 批药材中最高: 第4 批齿叶薰衣草药材中前3个 成分含量最高,而木犀草素含量最低,提示药材市场 上流通的不同批次齿叶薰衣草药材的化学成分含量 有较大差异,可能与药材产地的气候、环境和土壤等 因素有关,也可能与药材不同采收期黄酮类成分的互 相转化有关。

3.4 齿叶薰衣草与狭叶薰衣草质量差异

课题组前期建立了狭叶薰衣草药材的指纹图 谱[3],以第4批狭叶薰衣草为参照指纹图谱,提取了 10个色谱峰为狭叶薰衣草的指纹图谱共有峰,样品 的相似度在 0.9 以上,说明 20 批狭叶薰衣草的质量 较均一。选择第4批狭叶薰衣草在"2.1.1"项色谱条 件下进样测定,生成的图谱与生成的齿叶薰衣草对照 指纹图谱进行比较,见图3。由图可知,齿叶薰衣草 与狭叶薰衣草色谱峰的个数与面积差异较大,说明两 者成分可能存在较大差异。

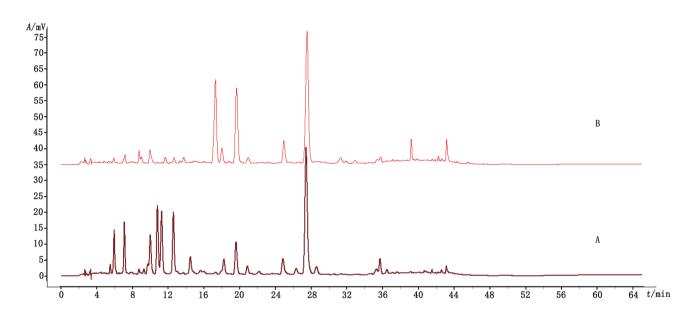


图 3 第 4 批齿叶薰衣草图谱与狭叶薰衣草对照指纹图(B)谱比较

Fig. 3 Reference fingerprints of Lavandula dentata L. and Lavandula angustifolia Mill.

3.5 小结

齿叶薰衣草药材的化学成分复杂,仅以几种成分 来控制药材质量较为片面,因此本实验采用指纹图谱 进一步对齿叶薰衣草药材质量进行表征和研究,同时 与狭叶薰衣草指纹图谱进行了比较。实验结果完善 了齿叶薰衣草质量评价,为进一步规范薰衣草药材市 场提供了理论依据。

解成喜,王强,崔晓明. 薰衣草挥发油化学成分的 GC-MS 分析 [J]. 新疆大学学报(自然科学版), 2002, 19(3): 294

XIE CX, WANG Q, CUI XM. The analysis of lavender oil by GC/MS [J]. J Xinjiang Univ (Nat Sci Ed), 2002, 19 (3): 294

[2] 赵军,徐芳,谭为,等.狭叶薰衣草的化学成分[J].光谱实验室, 2012, 29(1):47

ZHAO J, XU F, TAN W, et al. chemical constituents of Lavandula

- angustifol Mill. [J]. Chin J Spectrosc La, 2012, 29 (1): 47
- [3] 李晨阳, 谭为, 陈燕, 等. 狭叶薰衣草特征指纹图谱研究. 中国中 医药信息杂志, 2015, 22(4): 87 LI CY, TAN W, CHEN Y, et al. Study on HPLC characteristic fingerprints of *Lavandula angustifolia*[J]. Chin J Inf Tradit Chin Med, 2015, 22(4): 87
- [4] 邵婷婷,王会利,闫玉鑫,等. 齿叶薰衣草挥发油提取及化学成分研究[J]. 云南化工,2015,42(3):14
 SHAO TT, WANG HL, YAN YX, et al. Study of extraction and chenmical componets of volatile oil from Lavandula dentata [J]. Yunnan Chem Technol, 2015, 42(3):14
- [5] 陈和平,周贺新,贺瑞振,等. 薰衣草在新疆的研究现状及对策 [J]. 农垦医学, 2005, 27(5): 371

 CHEN HP, ZHOU HX, HE RZ, et al. Research status and countermeasures of lavender in Xinjiang[J]. J Nongken Med, 2005, 27(5): 371
- [6] 王春玲, 胡增辉, 沈红, 等. 齿叶薰衣草挥发物对小鼠生理生化的 影响[J]. 城市环境与城市生态, 2015, 28(4): 29 WANG CL, HU ZH, SHEN H, et al. Efects of VoCs emitted from Lavandula dentata on physiology and biochemistry of mice[J]. Urban Envir on Urban Ecol, 2015, 28(4): 29
- [7] KIM HM, CHO SH. Lavender oil inhibits immediate-type all ergicreaction in mice and rats [J]. J Pharmacol, 1999, 51 (2): 221
- [8] MORRIS N. The effects of lavender (Lavendula angustifolium) baths on psychological well-being: two exploratory randomised control trails [J]. Complement Ther Med, 2002, 10 (4): 223

- [9] LOUIS M, KOWALSKI SD. Use of aromatherapy with hospice patients to decrease pain, anxiety, and depression and to promote an increased sense of wellbeing [J]. Am J Hosp Palliat Care, 2002, 19 (6): 381
- [10] LIS-BALCHIN M, HART S. Studies on themode of action of the essential oil of lavender [J]. Ptytother Res, 1999, 3 (6): 540
- [11] 骆媱,潘娉娉,章建华,等. HPLC 法同时测定丹参 当归药对中7个成分的含量[J]. 药物分析杂志, 2018, 38(10): 1689 LUO Y, PAN PP, ZHANG JH, et al. Simultaneous determination of seven components in Radix Salviae Miltiorrhizae–Radix Angelicae Sinensis drug pair by HPLC[J]. Chin J Pharm Anal, 2018, 38(10): 1689
- [12] 赵倩,陈育鹏,崔旭盛,等.掌叶大黄 UPLC 多指标成分测定及指 纹图谱研究[J]. 药物分析杂志, 2018, 38(10): 1697 ZHAO Q, CHEN YP, CUI XS, et al. Study on multi-compound determination and fingerprint of Rheum palmatum by ultra performance liquid chromatography[J]. Chin J Pharm Anal, 2018, 38(10): 1697
- [13] 王信,李彩东、潘新波,等. HPLC 法同时测定珠子草中没食子酸、短叶苏木酚、柯里拉京、鞣花酸和芦丁的含量[J]. 药物分析杂志, 2018, 38(9): 1641
 WANG X, LI CD, PAN XB, et al. Simultaneous determination of galic acid, brervifolincaboxylic acid, corilagin, ellagic acid and rutin in Phyllanthus Niruri Linn. by HPLC [J]. Chin J Pharm Anal, 2018, 38(9): 1641

(本文于2018年10月24日修改回)